Respuesta :

Answer:

The graph of the the equation [tex]\:y=x+1[/tex] is also attached below.

Step-by-step explanation:

Here is the given table

x                               y

2                               3

4                               5

6                               7

8                               9

10                              11

Taking any two points:

  • (2, 3)
  • (4, 5)

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(2,\:3\right),\:\left(x_2,\:y_2\right)=\left(4,\:5\right)[/tex]

[tex]m=\frac{5-3}{4-2}[/tex]

[tex]m=1[/tex]

As the slope-intercept form is given by

[tex]y\:=\:mx+b[/tex]

Plugging any point, let say (2, 3) and m = 1 in the slope-intercept form to get the value of 'b' (y-intercept).

[tex]y\:=\:mx+b[/tex]

[tex]3\:=\:\left(1\right)2+b[/tex]

[tex]\mathrm{Switch\:sides}[/tex]

[tex]\left(1\right)\cdot \:2+b=3[/tex]

[tex]2+b=3[/tex]

[tex]\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}[/tex]

[tex]2+b-2=3-2[/tex]

[tex]b=1[/tex]

So the equation for the data presented in table will be:

[tex]y\:=\:mx+b[/tex]

  • m = 1
  • b = 1

Plugging the values in the equation

[tex]y\:=\:mx+b[/tex]

[tex]y\:=\:\left(1\right)x+1[/tex]

[tex]\:y=x+1[/tex]

Where

the slope = m = 1

y-intercept = b = 1

The graph of the the equation [tex]\:y=x+1[/tex] is also attached below.

Ver imagen SaniShahbaz