Twms77
contestada

If a and b are both integers and b does not equal 0, then -(a/b) = (-a)/b = a/(-b) Choose two values for a and b. see if those values make the equation true

Respuesta :

a=4 , b=3  These values make the equation true .

Step-by-step explanation:

Here we have , If a and b are both integers and b does not equal 0, then -(a/b) = (-a)/b = a/(-b) Choose two values for a and b. We need to find if those values make the equation true . Let's find out:

We have the following equation:

-(a/b) = (-a)/b = a/(-b) , Let a=4 , b=3 , So

[tex]-(a/b) = (-a)/b = a/(-b)[/tex]

[tex]-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}[/tex]

[tex]-\frac{4}{3} = \frac{-4}{3} = \frac{4}{-3}[/tex]

[tex]-\frac{4(-1)}{3} = \frac{-4(-1)}{3} = \frac{4(-1)}{-3}[/tex]                   { Multiplying by -1 }

[tex]\frac{4}{3} = \frac{4}{3} = \frac{4}{3}[/tex]

Therefore , These values make the equation true .