a=4 , b=3 These values make the equation true .
Step-by-step explanation:
Here we have , If a and b are both integers and b does not equal 0, then -(a/b) = (-a)/b = a/(-b) Choose two values for a and b. We need to find if those values make the equation true . Let's find out:
We have the following equation:
-(a/b) = (-a)/b = a/(-b) , Let a=4 , b=3 , So
⇒ [tex]-(a/b) = (-a)/b = a/(-b)[/tex]
⇒ [tex]-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}[/tex]
⇒ [tex]-\frac{4}{3} = \frac{-4}{3} = \frac{4}{-3}[/tex]
⇒ [tex]-\frac{4(-1)}{3} = \frac{-4(-1)}{3} = \frac{4(-1)}{-3}[/tex] { Multiplying by -1 }
⇒ [tex]\frac{4}{3} = \frac{4}{3} = \frac{4}{3}[/tex]
Therefore , These values make the equation true .