Respuesta :

Answer:

The approximate perimeter of the triangle is 10.5 units

Step-by-step explanation:

we know that

The perimeter of triangle is equal to the sum of its three length sides

so

[tex]P=XY+YZ+XZ[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance XY

we have

x [-6,-4], y [-10,-2]

substitute in the formula

[tex]d=\sqrt{(-2+4)^{2}+(-10+6)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(-4)^{2}}[/tex]

[tex]d_X_Y=\sqrt{20}\ units[/tex]

step 2

Find the distance YZ

we have

y [-10,-2], z [-6,-2]

substitute in the formula

[tex]d=\sqrt{(-2+2)^{2}+(-6+10)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(4)^{2}}[/tex]

[tex]d_Y_Z=4\ units[/tex]

step 3

Find the distance XZ

we have

x [-6,-4], z [-6,-2]

substitute in the formula

[tex]d=\sqrt{(-2+4)^{2}+(-6+6)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(0)^{2}}[/tex]

[tex]d_X_Z=2\ units[/tex]

step 4

Find the perimeter

[tex]P=XY+YZ+XZ[/tex]

substitute

[tex]P=\sqrt{20}+4+2=(\sqrt{20}+6)\ units[/tex] ----> exact value

[tex]P=\sqrt{20}+6=10.5\ units[/tex] ----> approximate value