Sergey is solving 5x2 + 20% – 7 = 0. Which steps could he use to solve the quadratic equation by completing the
square? Select three options.
5(x2 + 4x + 4) = -7 + 20
X+2 = + 27
5(x2 + 4x) = 7
5(x2 + 4x + 4) = 7 + 20
5(x2 + 4x) = -7

Respuesta :

Answer:

[tex]5(x^2+4x)=7[/tex]

[tex]5(x^2+4x+4)=7+20[/tex]

[tex](x+2)=\pm\sqrt{\frac{27}{5}}[/tex]

Step-by-step explanation:

we have

[tex]5x^2+20x-7=0[/tex]

step 1

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]5x^2+20x=7[/tex]

step 2

Factor 5 left side

[tex]5(x^2+4x)=7[/tex]

step 3

Complete the square

[tex]5(x^2+4x+2^2)=7+2^2(5)[/tex]

[tex]5(x^2+4x+4)=7+20[/tex]

[tex]5(x^2+4x+4)=27[/tex]

step 4

Rewrite as perfect squares

[tex]5(x+2)^2=27[/tex]

step 5

[tex](x+2)^2=\frac{27}{5}[/tex]

[tex](x+2)=\pm\sqrt{\frac{27}{5}}[/tex]

[tex](x+2)=\pm\frac{3\sqrt{15}}{5}[/tex]

step 6

[tex]x=-2\pm\frac{3\sqrt{15}}{5}[/tex]

Answer:

b, c, and d

Step-by-step explanation:

I took the test