Respuesta :

Answer:

[tex]cos(2x)=\frac{-17}{81}[/tex]

Step-by-step explanation:

First we have to find cosx.

We know that [tex]sin^2x+cos^2x=1[/tex], so it is [tex]cos^2x=1-(7/9)^2=(81-49)/81=32/81[/tex], then we have [tex]cosx=\frac{4\sqrt{2}}{9}[/tex]

Then we have

[tex]cos(2x)=cos^2x-sin^2x=(\frac{4\sqrt{2}}{9})^2-(\frac{7}{9})^2=\frac{32}{81}-\frac{49}{81}=\frac{-17}{81}[/tex]

Answer:

-17/81

Step-by-step explanation:

cos(2x) = 1 - 2sin²x

= 1 - 2(7/9)²

= 1 - 98/81

= -17/81