The polynomial 3x ^ 3 - 16x ^ 2 + 31x - 20 the area of a trapezoidal desktop . Of the bases of the x ^ 3 - 5x the height of the trapezoid? Hins: Use long division , what is trapezoid represented by the expressions trapezoid

Respuesta :

Answer:

Step-by-step explanation:

Given:

Area = 3x^3 - 16x^2 + 31x - 20

Base:

x^3 - 5x

Area of trapezoid, S = 1/2 × (A + B) × h

Using long division,

(2 × (3x^3 - 16x^2 + 31x - 20))/x^3 - 5x

= (6x^3 - 32x^2 + 62x - 40))/x^3 - 5x = 6 - (32x^2 - 92x + 40)/x^3 - 5x = 2S/Bh - Ah/Bh

= 2S/Bh - A/B

= (2S/B × 1/h) - A/B

Since, x^3 - 5x = B

Comparing the above,

A = 32x^2 - 92x + 40

2S/B = 6

Therefore, h = 1