Step-by-step explanation:
As
so
x y
2 1
3 5
4 9
5 13
6 17
and so on
From the table:
[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(2,\:1\right),\:\left(x_2,\:y_2\right)=\left(3,\:5\right)[/tex]
[tex]m=\frac{5-1}{3-2}[/tex]
[tex]m=4[/tex]
As the slope-intercept form of the line is
[tex]y=mx+b[/tex]
putting m=4 and any point, let say (2, 1) to find y-intercept 'b'.
[tex]1=\left(4\right)2+b[/tex]
[tex]8+b=1[/tex]
[tex]8+b-8=1-8[/tex]
[tex]b=-7[/tex]
So putting [tex]b=-7[/tex] and [tex]m=4[/tex] in the slope-intercept form of the line
[tex]y=\left(4\right)x+\left(-7\right)[/tex]
[tex]y=4x-7[/tex]
Therefore, the equation for the linear function will be:
[tex]y=4x-7[/tex]