Answer:
x^2-20, -x^2+x, 2^x, x^3+x^2-4, x^4-1, x^5-4x^2+1, x+30 (Least to greatest)
Step-by-step explanation:
Let x take any positive integer, x=2.
#Substitute x with 2 in all the functions to get determine the least to greatest:
[tex]x=2\\\\\# 2^x=2^2=4\\\\\#x^2-20=2^2-20=-16\\\\\#x^5-4x^2+1=2^5-4\times2^2+1=17\\\\\#x+30=2+30=32\\\\\#x^4-1=2^4-1=15\\\\\#x^3+x^2-4=2^3+2^2-4=8\\\\\#-x^2+x=-(2^2)+2=-2[/tex]
Using our calculated values, we can arrange the functions from the least to greatest as:
x^2-20, -x^2+x, 2^x, x^3+x^2-4, x^4-1, x^5-4x^2+1, x+30