Respuesta :

Answer:

100π units square

Step-by-step explanation:

The circle is centered on the point (-1,5) and contains the point (7,11).

We can find the radius, using the distance formula,

[tex]r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We substitute the points to get:

[tex]r=\sqrt{(7- - 1)^2+(11- 5)^2}[/tex]

This implies that:

[tex]r=\sqrt{(8)^2+(6)^2}[/tex]

[tex]r=\sqrt{64+36}[/tex]

[tex]r = \sqrt{100} [/tex]

[tex]r = 10 \: units[/tex]

The area of a circle is given by:

[tex]A=\pi \: {r}^{2} [/tex]

Plug in the radius into the formula to get:

[tex]A=\pi \times {10}^{2} [/tex]

[tex]A=\pi \times 100[/tex]

[tex]A=100\pi[/tex]

The area is 100π square units or 314 square units