Respuesta :

Answer:

Δy = 0.822

dy = 0.6

Step-by-step explanation:

Let us use the rules:

If f(x) = y, then

  • dy = f'(x) . dx
  • Δy = f(x + Δx) - f(x)

∵ [tex]y=e^{x}[/tex]

- Differentiate it (remember the differentiation of [tex]e^{x}[/tex] is

∴  [tex]y'=e^{x}(1)[/tex]

∴  [tex]y'=e^{x}[/tex]

∵ dy = y' . dx

∴ [tex]dy=e^{x}dx[/tex]

∵ x = 0

∵ dx = Δx

∵ Δx = 0.6

∴ dx = 0.6

- Substitute x by 0 and dx by 0.6 in y'

∴ [tex]dy=e^{0}(0.6)[/tex]

- Remember any number to the power of 0 is 1 except 0

∵ [tex]e^{0}[/tex] = 1

dy = 0.6

∵ Δy = f(x + Δx) - f(x)

∵ x = 0

- Substitute x by

∴ f(0) = [tex]e^{0}[/tex]

∴ f(0) = 1

∵ Δx = 0.6

∵ x + Δx = 0 + 0.6

∴ x + Δx = 0.6

- Substitute x by 0.6

∴ f(0.6) = [tex]e^{0.6}[/tex]

∴ f(0.6) = 1.8221188

∵ Δy = f(0.6) - f(0)

∴ Δy = 1.8221188 - 1

∴ Δy = 0.8221188

- Round it to the nearest 3 decimal places

Δy = 0.822