Answer:
60,000,000 times larger.
Step-by-step explanation:
Given:
Radius of a mercury atom = [tex]1.50\times10^{-3}[/tex]
Radius of a hydrogen atom = [tex]2.5\times10^{-11}[/tex]
We have to find that how many times the radius of a mercury atom larger than the radius of a hydrogen atom is.
Solution:
To find that how many times the radius of a mercury atom larger than the radius of a hydrogen atom is, we will simply divide:
[tex]\frac{Radius\ of\ a\ mercury\ atom}{ Radius\ of\ a\ hydrogen\ atom,}[/tex]
[tex]\frac{1.5\times10^{-3} }{2.5\times10^{-11} }[/tex]
[tex]0.6\times10^{-3-(-11)} :As\ we \ know, \frac{a^{m} }{a^{n} } =a^{m-n}[/tex]
[tex]0.6\times10^{-3+11} \\\\ 0.6\times10^{8}\\\\ 0.6\times10\times10\times10\times10\times10\times10\times10\times10\\ 60000000\ times[/tex]
Thus, radius of a mercury atom is 60,000,000 times larger than radius of a hydrogen atom.