Respuesta :

 [tex]\frac{d(Area)}{dt} =94.2ft^2/min[/tex] rate is its area changing when the radius is 5 ft.

Step-by-step explanation:

Here we have , The radius of a circle is increasing at a rate of 3 ft/min. We need to find  At what rate is its area changing when the radius is 5 ft. Let's find out:

We know that area of circle  = [tex]\pi r^2[/tex] .

⇒ [tex]Area = \pi r^2[/tex]

Differentiating both sides w.r.t to time we get :

[tex]\frac{d(Area)}{dt} = \pi\frac{ d(r^2)}{dt}[/tex]

[tex]\frac{d(Area)}{dt} = \pi(2r)\frac{ dr}{dt}[/tex]    ............(1)              {  [tex]\frac{d(r^n)}{dr}= nr^{n-1}[/tex]  }

But , According to Question

[tex]\frac{dr}{dt} = 3ft/min\\r=5ft[/tex]

Putting this value in equation (1):

[tex]\frac{d(Area)}{dt} = \pi(2(5))(3)[/tex]

[tex]\frac{d(Area)}{dt} =30 \pi[/tex]

[tex]\frac{d(Area)}{dt} =94.2ft^2/min[/tex]

Therefore ,  [tex]\frac{d(Area)}{dt} =94.2ft^2/min[/tex] rate is its area changing when the radius is 5 ft.