Respuesta :

by Quadratic formula , [tex]x^2 + 20 = 2x[/tex] , values of x are [tex]x = 1 \pm (1)i\sqrt{19}}[/tex] . None of mentioned options are correct according to question!

Step-by-step explanation:

Here we have , expression  x2 + 20 = 2x or , [tex]x^2 + 20 = 2x[/tex] .

We know that Quadratic formula is :

[tex]x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}[/tex]

[tex]x^2 + 20 = 2x[/tex]

⇒ [tex]x^2-2x+20=0[/tex]

[tex]a=1\\b=-2\\c=20[/tex]

Putting this value in equation [tex]x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}[/tex] :

⇒ [tex]x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}[/tex]

⇒ [tex]x = \frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(20)}}{2(1)}[/tex]

⇒ [tex]x = \frac{2 \pm \sqrt{4-80}}{2}[/tex]

⇒ [tex]x = (\frac{2 \pm 2i\sqrt{19}}{2})[/tex]

⇒ [tex]x = 1 \pm (1)i\sqrt{19}}[/tex]

Therefore , by Quadratic formula , [tex]x^2 + 20 = 2x[/tex] , values of x are [tex]x = 1 \pm (1)i\sqrt{19}}[/tex] . None of mentioned options are correct according to question!