Respuesta :
Correct answer is D) 6 less-than-or-equal-to x less-than infinity
Step-by-step explanation:
Here we have [tex]f(x) = 2(\sqrt{x-6})[/tex] . We need to find domain of this function . Let's find out:
⇒ [tex]f(x) = 2(\sqrt{x-6})[/tex]
Since, Inside term of a square root is always greater then or equal to zero i.e.
⇒ [tex]x-6\geq 0[/tex]
Adding 6 both sides we get:
⇒ [tex]x-6\geq 0[/tex]
⇒ [tex]x-6+6\geq 0+6[/tex]
⇒ [tex]x\geq 6[/tex]
Therefore , Domain of function [tex]f(x) = 2(\sqrt{x-6})[/tex] is all values of x greater then or equal to 6 i.e. [tex]x\geq 6[/tex] . Correct answer is D) 6 less-than-or-equal-to x less-than infinity .
Answer:
the answer is D. 6 ≤ x < ∞
Step-by-step explanation:
the answer is D. 6 ≤ x < ∞