Respuesta :

The value of n is 5.

Solution:

Given equation:

[tex]x^3+nx^2+4nx-6 \div x+3[/tex]

Remainder = -48

By remainder theorem,

x + 3 = 0

Add -3 on both sides.

x + 3 - 3 = 0 - 3

x = -3

Substitute x = -3 in given.

[tex]\text{Remainder}=(-3)^{3}+n (-3)^{2}+4n(-3) -6[/tex]

[tex]-48=-27+9n+-12n -6[/tex]

[tex]-48=-33-3n[/tex]

Add 33 on both sides.

[tex]-48+33=-33-3n+33[/tex]

[tex]-15=-3n[/tex]

Divide by -3 on both sides.

[tex]$\frac{-15}{-3} =\frac{-3n}{-3}[/tex]

[tex]5 = n[/tex]

The value of n is 5.