Just get the right answer 20 points

Answer:
[tex]\large \boxed{\text{(B) } 3\times 10^{8}}[/tex]
Step-by-step explanation:
To figure out how many times a number is than another, you divide the larger number by the smaller.
Here, your numbers are expressed in scientific notation, so you
1. Divide the coefficients and the exponentials separately
[tex]\dfrac{12 \times 10^{12}}{4 \times 10^{4}} = \dfrac{12}{4} \times \dfrac{10^{12}}{10^{4}}[/tex]
2. Divide the coefficients
[tex]\dfrac{12}{4} = 3[/tex]
3. Divide the exponentials
Subtract the exponent in the denominator from the exponent in the numerator.
[tex]\dfrac{10^{12}}{10^{4}} = 10^{(12 - 4)} = 10 ^{8}[/tex]
4. Re-join the new coefficient and the new exponential
[tex]\dfrac{12 \times 10^{12}}{4 \times 10^{4}} = \large \boxed{\mathbf{3\times 10^{8}}}[/tex]