Answer:
cotθ = [tex]\sqrt{11}[/tex] [tex]/ 5[/tex]
Step-by-step explanation:
sine = opposite / hypotenuse
cotangent = adjacent / opposite
So first we have to solve for the adjacent side b, using pythagorean theorem
[tex]a^{2} +b^{2} =c^{2}[/tex]
[tex]5^{2} +b^{2} =6^{2}[/tex]
[tex]25 + b^{2} = 36[/tex]
[tex]b^{2} = 11[/tex]
[tex]b = \sqrt{11}[/tex]
cotangent = adjacent / opposite
cotθ = [tex]\sqrt{11}[/tex] [tex]/ 5[/tex]