Will someone please help me understand this?

Option A:
The length of diagonal JL is [tex]3 \sqrt{5} \text { units }[/tex].
Solution:
In the quadrilateral, the coordinates of J is (1, 6) and L is (7, 3).
So that, [tex]x_1=1, y_1=6, x_2=7, y_2=3[/tex]
To find the length of the diagonal JL.
Using distance formula:
[tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
[tex]d=\sqrt{(3-6)^2+(7-1)^2}[/tex]
[tex]d=\sqrt{(-3)^2+(6)^2}[/tex]
[tex]d=\sqrt{9+36}[/tex]
[tex]d=\sqrt{45}[/tex]
[tex]d=\sqrt{3^2\times 5}[/tex]
[tex]d=3\sqrt{ 5}[/tex] units
The length of diagonal JL is [tex]3 \sqrt{5} \text { units }[/tex].
Option A is the correct answer.