Respuesta :

Option A:

The length of diagonal JL is [tex]3 \sqrt{5} \text { units }[/tex].

Solution:

In the quadrilateral, the coordinates of J is (1, 6) and L is (7, 3).

So that, [tex]x_1=1, y_1=6, x_2=7, y_2=3[/tex]

To find the length of the diagonal JL.

Using distance formula:

[tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]

[tex]d=\sqrt{(3-6)^2+(7-1)^2}[/tex]

[tex]d=\sqrt{(-3)^2+(6)^2}[/tex]

[tex]d=\sqrt{9+36}[/tex]

[tex]d=\sqrt{45}[/tex]

[tex]d=\sqrt{3^2\times 5}[/tex]

[tex]d=3\sqrt{ 5}[/tex] units

The length of diagonal JL is [tex]3 \sqrt{5} \text { units }[/tex].

Option A is the correct answer.

Answer:

the answer is A

Step-by-step explanation: