Respuesta :

Line 1 and Line 4 are parallel lines

Solution:

General equation of a line:

y = mx + c

where m is the slope and c is the y-intercept of the line.

To find the slope of each line:

Line 1: [tex]y=-\frac{3}{4} x-6[/tex]

Slope [tex](m_1)=-\frac{3}{4}[/tex]

Line 2: [tex]y-7=-4(x+9)[/tex]

[tex]y-7=-4x-36[/tex]

Add 7 on both sides, we get

[tex]y=-4x-29[/tex]

Slope [tex](m_2)=-4[/tex]

Line 3: [tex]y=-2 x+6[/tex]

Slope [tex](m_3)=-2[/tex]

Line 4: [tex]x+\frac{4}{3} y=-5[/tex]

Subtract x from both sides, we get

[tex]\frac{4}{3} y=-x-5[/tex]

Multiply  by [tex]\frac{3}{4}[/tex] on both sides, we get

[tex]y=-\frac{3}{4}x-\frac{15}{4}[/tex]

Slope [tex](m_4)=-\frac{3}{4}[/tex]

Two lines are parallel, if their slopes are equal.

From the above slopes,

[tex]m_1=m_4[/tex]

Therefore Line 1 and Line 4 are parallel lines.