A car engine with a thermal efficiency of 33% drives the air-conditioner unit (a refrigerator) besides powering the car and other auxiliary equipment. On a hot (35oC) summer day the A/C takes outside air in and cools it to 5oC sending it into a duct using 2 kW of power input and it is assumed to be half as good as a Carnot refrigeration unit. Find the rate of fuel (kW) being burned extra just to drive the A/C unit and its COP. Find the flow rate of cold air the A/C unit can provide.

Respuesta :

Answer:

The rate of fuel required to drive the air conditioner [tex]Q_h = 6.061 kW[/tex]

The flow rate of the cold air is  [tex]\r m = 0.30765 kg/s[/tex]

Explanation:

From this question we are told that

    The efficiency is [tex]\eta = 33[/tex]% = 0.33

   Temperature for the hot day is  [tex]T_h = 35^oC = 308 K \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (35+273)[/tex]

        Temperature after cooling is  [tex]T_c = 5^oC = 278K[/tex]

      The input power is  [tex]P_{in} = 2kW[/tex]

The rate of fuel required to drive the air conditioner can be mathematically represented as

              [tex]Q_h = \frac{P_{in}}{\eta}[/tex]

                    [tex]= \frac{2}{0.33} = 6.061 kW[/tex]

From the question the air condition is assumed to be half as a Carnot refrigeration unit

 This can be Mathematically interpreted in terms of COP(coefficient of performance) as

             [tex]\beta_{air} = 0.5 \beta[/tex]

where [tex]\beta[/tex]  denotes COP and is mathematically represented as

                     [tex]\beta = \frac{Q_c}{P_{in}}[/tex]

= >              [tex]Q_c = \beta P_{in}[/tex]

Where [tex]Q_c[/tex] is the rate of flue being burned for cold air to flow

Now if  the COP of a Carnot refrigerator is having this value

                [tex]\beta_{Carnot } = \frac{T_c}{T_h - T_c}[/tex]

                            [tex]= \frac{278}{308-278}[/tex]

                            [tex]\beta_{Carnot} = 9.267\\[/tex]

Then

     [tex]\beta_{air} = 0.5 * 9.2667[/tex]

            [tex]= 4.6333[/tex]

Now substituting the value of [tex]\beta[/tex] to solve for [tex]Q_c[/tex]

                             [tex]Q_c = \beta P_{in}[/tex]

                                  [tex]= 4.6333 *2[/tex]

                                  [tex]9.2667kW[/tex]

The equation for the rate of fuel being burned for the cold air to flow

                       [tex]Q_c = \r mc_p \Delta T[/tex]

Making the flow rate of the cold air

                       [tex]\r m = \frac{Q_c}{c_p \Delta T}[/tex]

                            [tex]= \frac{9.2667}{1.004}* (308 - 278)[/tex]

                            [tex]= 0.30765 kg/s[/tex]