Respuesta :
Without using Lagrange multipliers: Consider the same problem in polar coordinates, where we take
[tex]x=\cos\theta,y=\sin\theta[/tex]
to restrict [tex]f(x,y)[/tex] to the circle [tex]x^2+y^2=1[/tex], or [tex]r=1[/tex]. Then
[tex]f(x,y)=f(\cos\theta,\sin\theta)=3\cos^2\theta+4\sin^2\theta=3+\sin^2\theta[/tex]
which is a function of [tex]\theta[/tex] alone; denote this function by [tex]g(\theta)[/tex].
Find the critical points:
[tex]g'(\theta)=2\sin\theta\cos\theta=\sin(2\theta)=0\implies2\theta=n\pi\implies\theta=\dfrac{n\pi}2[/tex]
where [tex]n[/tex] is any integer. In one revolution of the circle, we get 4 critical points for [tex]n=0,1,2,3[/tex], which correspond to the points (1, 0), (0, 1), (-1, 0), and (0, 1) in Cartesian coordinates and to the extreme value of 3.
Take the second derivative:
[tex]g''(\theta)=2\cos(2\theta)[/tex]
Then [tex]g''(0)[/tex] and [tex]g''(\pi)[/tex] are both positive, while [tex]g''\left(\frac\pi2\right)[/tex] and [tex]g''\left(\frac{3\pi}2\right)[/tex] are both negative, which indicates (1, 0) and (-1, 0) are minima, and (0, 1) and (0, 1) are maxima.