Answer:
a) [tex]y_{R} (1.00,1.00) = -0.546\,cm[/tex], b) [tex]y_{R} (1.00,0.50) = -4.311\,cm[/tex], c) [tex]y_{R} (0.50,0.00) = 2.278\,cm[/tex]
Explanation:
The principle of superposition points out that:
[tex]y_{R}(x,t) = \Sigma^{n}_{i=1} y_{i} (x,t)[/tex]
Then, the results are:
a) [tex]y_{R} (1.00, 1.00) = y_{1} (1.00,1.00) + y_{2} (1.00,1.00)[/tex]
[tex]y_{R} (1.00,1.00) = -0.546\,cm[/tex]
b) [tex]y_{R} (1.00, 0.50) = y_{1} (1.00,0.50) + y_{2} (1.00,0.50)[/tex]
[tex]y_{R} (1.00,0.50) = -4.311\,cm[/tex]
c) [tex]y_{R} (0.50, 0.00) = y_{1} (0.50,0.00) + y_{2} (0.50,0.00)[/tex]
[tex]y_{R} (0.50,0.00) = 2.278\,cm[/tex]