Respuesta :
Answer:
a) [tex]P(X>30000 | X>10000)=0.3679[/tex]
b) [tex]P(X>30000 | X>10000)=0.5[/tex]
Step-by-step explanation:
a) In the given case,
Mileage of the cars = [tex]X \sim E X p(20000)[/tex]
The PDF is [tex]f(x)=\frac{1}{20000} e^{-x / 20000}, x>0[/tex]
The CDF is [tex]F(x)=1-e^{-x / 20000}, x>0[/tex]
For new car the probability will be
[tex]P(X>20000)=1-F(20000)[/tex]
[tex]P(X>20000)=e^{-20000 / 20000}[/tex]
[tex]P(X>20000)=0.3679[/tex]
For the used car probability is
[tex]P(X>30000 | X>10000)=\frac{P(X>30000 \cap X>10000)}{P(X>10000)}[/tex]
[tex]P(X>30000 | X>10000)=\frac{P(X>30000)}{P(X>10000)}[/tex]
[tex]P(X>30000 | X>10000)=\frac{1-F(30000)}{1-F(10000)}[/tex]
[tex]P(X>30000 | X>10000)=\frac{e^{-30000 / 20000}}{e^{-10000 / 20000}}[/tex]
[tex]P(X>30000 | X>10000)=0.3679[/tex]
b) For the case given in this part the mileage of the cars is [tex]X \sim[/tex] Uniform (0,40000)
The PDF is [tex]f(x)=\frac{1}{40000}, x>0[/tex]
The CDF is [tex]F(x)=\frac{x}{40000}, x>0[/tex]
For the new car probability is [tex]P(X>20000)=1-F(20000)[/tex]
[tex]P(X>20000)=1-\frac{20000}{40000}[/tex]
[tex]P(X>20000)=0.5[/tex]
For the old car probability is, [tex]P(X>30000 | X>10000)=\frac{P(X>30000 \cap X>10000)}{P(X>10000)}[/tex]
[tex]P(X>30000 | X>10000)=\frac{P(X>30000)}{P(X>10000)}[/tex]
[tex]P(X>30000 | X>10000)=\frac{1-F(30000)}{1-F(10000)}[/tex]
[tex]P(X>30000 | X>10000)=\frac{1-\frac{30000}{40000}}{1-\frac{20000}{40000}}[/tex]
[tex]P(X>30000 | X>10000)=0.5[/tex]