Respuesta :

The length of BC is [tex]4 \sqrt{5}[/tex].

Solution:

Given ABC is a right triangle.

AC is the hypotenuse and BD is the altitude.

AB and BC are legs of the triangle ABC.

AC = 16 and DC = 5

Leg rule of geometric mean theorem:

[tex]$\frac{\text { hypotenuse }}{\text { leg }}=\frac{\text { leg }}{\text { part }}$[/tex]

[tex]$\Rightarrow \frac{AC}{BC}=\frac{BC}{DC}$[/tex]

[tex]$\Rightarrow \frac{16}{x}=\frac{x}{5}$[/tex]

Do cross multiplication.

[tex]\Rightarrow 16\times 5 = x\times x[/tex]

[tex]\Rightarrow 80= x^2[/tex]

[tex]\Rightarrow 16\times 5= x^2[/tex]

Taking square root on both sides.

[tex]\Rightarrow \sqrt{16\times 5} = \sqrt{x^2}[/tex]

[tex]\Rightarrow \sqrt{4^2\times 5} = \sqrt{x^2}[/tex]

square and square roots get canceled, we get

[tex]\Rightarrow 4\sqrt{ 5} = x[/tex]

The length of BC is [tex]4 \sqrt{5}[/tex].