Answer :
Explanation:
Given :
Length of pipe A [tex]L_{A} = 1500[/tex] m
Length of pipe B [tex]L_{B} = 2500[/tex] m
Flow rate through pipe A [tex]Q_{A} = 0.4 \frac{m^{3} }{s}[/tex]
Diameter of pipe [tex]D = 30 \times 10^{-2}[/tex] m
Velocity from pipe A,
[tex]V _{A} = \frac{Q_{A} }{A}[/tex]
[tex]V _{A} = \frac{0.4 \times 4 }{\pi ( 30 \times 10^{-2} )^{2} }[/tex]
[tex]V_{A} = 5.66[/tex] [tex]\frac{m}{s}[/tex]
Here, head loss is same because height is same.
[tex]h_{a} = h_{b}[/tex]
[tex]L_{A} V_{A} ^{2} = L_{B} V_{B} ^{2}[/tex]
[tex]V_{B} = \sqrt{\frac{1500}{2500}} (5.66)[/tex]
[tex]V_{B} = 4.38[/tex] [tex]\frac{m}{s}[/tex]
Now rate of flow from pipe B is,
[tex]Q_{B} = V_{B} A[/tex]
[tex]Q_{B} = \frac{\pi }{4} (0.3)^{2} \times 4.38[/tex]
[tex]Q_{B} = 0.3094[/tex] [tex]\frac{m^{3} }{s}[/tex]