A certain part of the cast iron piping of a water distribution system involves a parallel section. Both parallel pipes have a diameter of 30 cm, and the flow is fully turbulent. One of the branches (pipe A) is 1500 m long while the other branch (pipe B) is 2500 m long. If the flow rate through pipe A is 0.4 m^3/s, determine the flow rate through pipe B. Disregard minor losses and assume the water temperature to be 15C. Show that the flow is fully rough, and thus the friction factor is independent of Reynolds number.

Respuesta :

Answer :

Flow rate in pipe B is = 0.3094 [tex]\frac{m^{3} }{s}[/tex]

Explanation:

Given :

Length of pipe A [tex]L_{A} = 1500[/tex] m

Length of pipe B [tex]L_{B} = 2500[/tex] m

Flow rate through pipe A [tex]Q_{A} = 0.4 \frac{m^{3} }{s}[/tex]

Diameter of pipe [tex]D = 30 \times 10^{-2}[/tex] m

Velocity from pipe A,

  [tex]V _{A} = \frac{Q_{A} }{A}[/tex]

  [tex]V _{A} = \frac{0.4 \times 4 }{\pi ( 30 \times 10^{-2} )^{2} }[/tex]

  [tex]V_{A} = 5.66[/tex] [tex]\frac{m}{s}[/tex]

Here, head loss is same because height is same.

    [tex]h_{a} = h_{b}[/tex]

[tex]L_{A} V_{A} ^{2} = L_{B} V_{B} ^{2}[/tex]

[tex]V_{B} = \sqrt{\frac{1500}{2500}} (5.66)[/tex]

[tex]V_{B} = 4.38[/tex] [tex]\frac{m}{s}[/tex]

Now rate of flow from pipe B is,

[tex]Q_{B} = V_{B} A[/tex]

[tex]Q_{B} = \frac{\pi }{4} (0.3)^{2} \times 4.38[/tex]

[tex]Q_{B} = 0.3094[/tex] [tex]\frac{m^{3} }{s}[/tex]