On the earth, when an astronaut throws a 0.250-kg stone vertically upward, it returns to his hand a time T later. On planet X he finds that, under the same circumstances, the stone returns to his hand in 2T. In both cases, he throws the stone with the same initial velocity and it feels negligible air resistance. The acceleration due to gravity on planet X (in terms of g) is _______.a) g/. b) g/4. c) 2g. d) g/2. e) g.

Respuesta :

Answer:

correct is d) a ’= g / 2

Explanation:

For this exercise let's use the kinematics equations

On earth

      v = v₀ - a t

     a = (v₀- v) / T

On planet X

    v = v₀ - a' t’

    a ’= (v₀-v) / 2T

Let's substitute the land values ​​in plot X

     a’= a / 2

Now let's use Newton's second law

       W = ma

      m g = m a

      a = g

We substitute

      a ’= g / 2

So we see that on planet X the acceleration is half the acceleration of Earth's gravity