The combination of an applied force and a friction force produces a constant total torque of 35.5 N · m on a wheel rotating about a fixed axis. The applied force acts for 5.80 s. During this time, the angular speed of the wheel increases from 0 to 10.4 rad/s. The applied force is then removed, and the wheel comes to rest in 60.4 s. (a) Find the moment of inertia of the wheel. kg · m2 (b) Find the magnitude of the torque due to friction. N · m (c) Find the total number of revolutions of the wheel during the entire interval of 66.2 s.

Respuesta :

Answer:

a) [tex]I = 19.799\,kg\cdot m^{2}[/tex], b) [tex]T = -3.405\,N\cdot m[/tex], c) [tex]n_{T} \approx 54.842\,rev[/tex]

Explanation:

a) The net torque is:

[tex]T = I\cdot \alpha[/tex]

Let assume a constant angular acceleration, which is:

[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex]

[tex]\alpha = \frac{10.4\,\frac{rad}{s} - 0\,\frac{rad}{s} }{5.80\,s}[/tex]

[tex]\alpha = 1.793\,\frac{rad}{s^{2}}[/tex]

The moment of inertia of the wheel is:

[tex]I = \frac{T}{\alpha}[/tex]

[tex]I = \frac{35.5\,N\cdot m}{1.793\,\frac{rad}{s^{2}} }[/tex]

[tex]I = 19.799\,kg\cdot m^{2}[/tex]

b) The deceleration of the wheel is due to the friction force. The deceleration is:

[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex]

[tex]\alpha = \frac{0\,\frac{rad}{s} - 10.4\,\frac{rad}{s}}{60.4\,s}[/tex]

[tex]\alpha = - 0.172\,\frac{rad}{s^{2}}[/tex]

The magnitude of the torque due to friction:

[tex]T = (19.799\,kg\cdot m^{2})\cdot (-0.172\,\frac{rad}{s^{2}} )[/tex]

[tex]T = -3.405\,N\cdot m[/tex]

c) The total angular displacement is:

[tex]\theta_{T} = \theta_{1} + \theta_{2}[/tex]

[tex]\theta_{T} = \frac{(10.4\,\frac{rad}{s} )^{2}-(0\,\frac{rad}{s} )^{2}}{2\cdot (1.793\,\frac{rad}{s^{2}} )} + \frac{(0\,\frac{rad}{s} )^{2}-(10.4\,\frac{rad}{s} )^{2}}{2\cdot (-0.172\,\frac{rad}{s^{2}} )}[/tex]

[tex]\theta_{T} = 344.580\,rad[/tex]

The total number of revolutions of the wheel is:

[tex]n_{T} = \frac{\theta_{T}}{2\pi}[/tex]

[tex]n_{T} = \frac{344.580\,rad}{2\pi}[/tex]

[tex]n_{T} \approx 54.842\,rev[/tex]