A mass weighing 14 pounds stretches a spring 2 feet. The mass is attached to a dashpot device that offers a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the values of the damping constant β so that the subsequent motion is overdamped, critically damped, and underdamped. (If an answer is an interval, use interval notation. Use g = 32 ft/s2 for the acceleration due to gravity.)

Respuesta :

Answer:

The motion is over-damped when λ^2 - w^2 > 0 or when [tex]b^{2}[/tex] > 0.86

The motion is critically when λ^2 - w^2 = 0 or when [tex]b^{2}[/tex] = 0.86

The motion is under-damped when λ^2 - w^2 < 0 or when [tex]b^{2}[/tex] < 0.86

Explanation:

Using the newton second law

k is the spring constante

b positive damping constant

m mass attached

[tex]m\frac{d^{2} x}{dt^{2}} = - kx - b\frac{dx}{dt}[/tex]

x(t) is the displacement from the equilibrium position

[tex]\frac{d^{2} x}{dt^{2}} +\frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = 0[/tex]

Converting units of weights in units of mass (equation of motion)

[tex]m = \frac{W}{g} = \frac{14}{32} = 0.43 slug[/tex]

From hook's law we can calculate the spring constant k

[tex]k = \frac{W}{s} = \frac{14}{2} = 7 lb/ft[/tex]

If we put m and k into the DE, we get

[tex]\frac{d^{2} x}{dt^{2}} +\frac{b}{0.43}\frac{dx}{dt} + 16.28x = 0[/tex]

Denoting the constants

2λ = [tex]\frac{b}{m}[/tex] = [tex]\frac{b}{0.43}[/tex]

λ = b/0.215

[tex]w^{2} = \frac{k}{m} = 16.28[/tex]

λ^2 - w^2 = [tex]\frac{b^{2} }{0.046} - 16.28[/tex]

This way,

The motion is over-damped when λ^2 - w^2 > 0 or when [tex]b^{2}[/tex] > 0.86

The motion is critically when λ^2 - w^2 = 0 or when [tex]b^{2}[/tex] = 0.86

The motion is under-damped when λ^2 - w^2 < 0 or when [tex]b^{2}[/tex] < 0.86

(1) The motion is over-damped when [tex]\lambda^2-w^2 > 0[/tex]λ^2 - w^2 > 0 or when  [tex]b^2[/tex]> 0.86

(2) The motion is critically when [tex]\lambda^2-w^2 =0[/tex] or when [tex]b^2[/tex] = 0.86

(3) The motion is under-damped when  [tex]\lambda^2-w^2 > 0[/tex] or when  [tex]b^2[/tex]< 0.86

What will be the motion of the spring-mass system?

From newton's  second law of motion

k  = Spring constant

b = positive damping constant

m =mass attached

[tex]m\dfrac{d^2x}{dt^2} =-kx-b\dfrac{dx}{dt}[/tex]

Since x(t) is the displacement from the equilibrium position

[tex]\dfrac{d^2x}{dt^2} +\dfrac{h}{m} \dfrac{dx}{dt} +\dfrac{k}{m} x=0[/tex]

Converting units of weights in units of mass (equation of motion)

[tex]m=\dfrac{w}{g} =\dfrac{14}{32} =0.43[/tex]

From hook's law, we can calculate the spring constant k

[tex]k=\dfrac{w}{s} =\dfrac{14}{2} =7 \frac{lb}{ft^2}[/tex]

If we put m and k into the equation we get

[tex]\dfrac{d^2x}{dt^2} +\dfrac{b}{0.43} \dfrac{dx}{dt} +16.28x=0[/tex]

Denoting the constants

[tex]2\lambda=\dfrac{b}{m} =\dfrac{b}{0.43}[/tex]

[tex]\lambda =\dfrac{b}{0.215}[/tex]

[tex]\lambda^2-w^2=\dfrac{b^2}{0.046} =16.28[/tex]

Thus

(1) The motion is over-damped when [tex]\lambda^2-w^2 > 0[/tex]λ^2 - w^2 > 0 or when  [tex]b^2[/tex]> 0.86

(2) The motion is critically when [tex]\lambda^2-w^2 =0[/tex] or when [tex]b^2[/tex] = 0.86

(3) The motion is under-damped when  [tex]\lambda^2-w^2 > 0[/tex] or when  [tex]b^2[/tex]< 0.86

To know more about vibrations follow

https://brainly.com/question/1380029