Marvin uses a long copper wire with resistivity 1.68 x 10^-8 Ω⋅m and diameter 1.00 x 10^−3​​ m to create a solenoid that has a 3.00 cm radius.

Part A: Calculate the total resistance if Marvin uses 11.3 meters of wire to create the solenoid.

Part B: Calculate how many turns are in the solenoid.

Part C: A 3.00 Volt potential difference is applied across the wires of the solenoid. Calculate the current that passes through the solenoid.

Part D: If the coils in the solenoid are separated so that they are evenly spaced across a total length of 0.1 m, what is the magnitude of the magnetic field along the central axis inside of the solenoid?

Respuesta :

Answer with Explanation:

We are given that

Resistivity of copper wire=[tex]\rh0=1.68\times 10^{-8}\Omega m[/tex]

Diameter=d=[tex]1.00\times 10^{-3} m[/tex]

Radius of copper wire=[tex]r=\frac{d}{2}=\frac{1}{2}\times 10^{-3} m[/tex]

Radius of solenoid=r'[tex]=3 cm=3\times 10^{-2} m[/tex]

1 m=100 cm

a.Length of wire=l=11.3 m

Area of wire=A=[tex]\pi r^2[/tex]

Where [tex]\pi=3.14[/tex]

A=[tex]3.14\times (\frac{1}{2}\times 10^{-3})^2[/tex]

Resistance, R=[tex]\rho \frac{l}{A}[/tex]

Using the formula

[tex]R=1.68\times 10^{-8}\times\frac{11.3}{3.14\times (\frac{1}{2}\times 10^{-3})^2}[/tex]

[tex]R=0.24\Omega[/tex]

B.Length of solenoid=[tex]2\pi r'=2\times 3.14\times 3\times 10^{-2}=0.188[/tex] m

Number of turns=[tex]n_0=\frac{l}{2\pi r'}=\frac{11.3}{0.188}[/tex]

[tex]n_0[/tex]=60

C.Potential difference,V=3 V

Current,I=[tex]\frac{V}{R}[/tex]

I=[tex]\frac{3}{0.24}=12.5 A[/tex]

D.Total length =0.1 m

Number of turns per unit length,n=[tex]\frac{60}{0.1}=600[/tex]

Magnetic field along central axis inside of the solenoid,B=[tex]\mu_0 nI[/tex]

[tex]B=4\pi\times 10^{-7}\times 12.5\times 600=9.42\times 10^{-3} T[/tex]

Answer:

Explanation:

resistivity of copper, ρ = 1.68 x 10^-8 ohm - m

diameter = 1 x 10^-3 m

radius of wire, r = 0.5 x 10^-3 m

Radius of solenoid, r' = 3 cm

(A)

Length of wire, l = 11.3 m

Let the resistance of wire is R.

[tex]R= \frac{\rho\times l}{A}[/tex]

where, A is the crossection of wire

A = 3.14 x 0.5 x 10^-3 x 0.5 x 10^-3 = 7.85 x 10^-7 m²

[tex]R= \frac{1.68\times 10^{-8}\times 11.3}{7.85\times 10^{-7}}[/tex]

R = 0.24 ohm

(B)

Let the number of turns is N.

Length of wire = N x circumference of one turn

11.3 = N x 2 x 3.14 x 0.03

N = 60

(C)

V = 3 V

R = 0.24 ohm

V = i x R

3 = i x 0.24

i = 12.5 A

(D) number of turns per unit length, n = N / 0.1 = 60 / 0.1 = 600

The magnetic field is given by

[tex]B = \mu _{0}ni[/tex]

[tex]B = 4 \times 3.14 \times 10^{-7}\times 600\times 12.5[/tex]

B = 9.42 x 10^-3 Tesla