A nonconducting sphere of radius 10 cm is charged uniformly with a density of 100 nC/m3. What is the magnitude of the potential difference between the center and a point 4.0 cm away?

Respuesta :

Explanation:

The given data is as follows.

   Radius of the sphere (R) = 10 cm = 0.01 m   (as 1 m = 100 cm)

   Distance from the center (r) = 4 cm = 0.04 m

   Charge density ([tex]\sigma[/tex]) = 100 [tex]nC/m^{3}[/tex]

                                  = [tex]100 \times 10^{-9} C/m^{3}[/tex]   (As 1 nm = [tex]10^{-9} m[/tex])

As the relation between charge and potential difference is as follows.

          Q = [tex]\sigma V[/tex]

              = [tex]\sigma (\frac{4}{3} \pi r^{3})[/tex]

              = [tex]100 \times 10^{-9} C/m^{3} \times \frac{4}{3} \pi (0.01)^{3}[/tex]  

              = [tex]4.19 \times 10^{-10} C[/tex]

Expression for electric field is as follows.

           E(r) = [tex]k \frac{qr}{R^{3}}[/tex]

Electric potential, V(r) = [tex]-\int_{0}^{r} E(r) dr[/tex]

               = [tex]-\int_{0}^{r} k \frac{qr}{R^{3}} dr[/tex]

               = [tex]-k (\frac{qr^{2}}{2R^{3}})[/tex]  

               = [tex]-9 \times 10^{9} Nm^{2}/C^{2} (\frac{4.19 \times 10^{-10} C (0.04)^{2}}{2(0.1)^{3}})[/tex]  

              = -3 V

Thus, we can conclude that the magnitude of the potential difference between the center and a point 4.0 cm away is -3 V.