Respuesta :

Answer: [tex]6x^{3}+19x^{2} +3x=0[/tex]

Step-by-step explanation:

The formula to calculate the equation of the polynomial is given by :

[tex](x-\alpha )(x-\beta )(x-v) = 0[/tex]

where : [tex]\alpha ,\beta[/tex] and [tex]v[/tex] are the zeros , that is , the roots of the equation.

substituting the zeros into the equation , we have :

[tex](x-0)(x-(-\frac{1}{6}))(x-(-3) =0[/tex]

⇒ [tex]x(x+\frac{1}{6})(x+3)=0[/tex]

expanding , we have

[tex](x^{2} +\frac{x}{6})(x+3) = 0[/tex]

⇒[tex]x^{3}+3x^{2} +\frac{x^{2}}{6}+\frac{3x}{6}=0[/tex]

multiplying through by 6 , we have

[tex]6x^{3}+18x^{2} +x^{2} +3x=0[/tex]

⇒[tex]6x^{3}+19x^{2} +3x=0[/tex]

therefore , the equation P  is  [tex]6x^{3}+19x^{2} +3x=0[/tex]

Answer:

p(x)=x(6x+1)(x+3)

Step-by-step explanation: