Answer:
The equilibrium concentration of hydrogen gas is 0.0010 M.
Explanation:
The equilibrium constant of the reaction = [tex]K_c=9.30\times 10^{-8[/tex]}
Moles of hydrogen sulfide = 0.31 mol
Volume of the container = 4.1 L
[tex][concentration]=\frac{moles}{volume (L)}[/tex]
[tex][H_2S]=\frac{0.31 mol}{4.1 L}=0.076 M[/tex]
[tex]2H_2S(g)\rightleftharpoons 2H_2(g)+S_2(g)[/tex]
Initially
0.076 M
At equilibrium
(0.076-2x) 2x x
The expression of an equilibrium constant :
[tex]K_c=\frac{[H_2]^2[S_2]}{[H_2S]^2}[/tex]
[tex]9.30\times 10^{-8}=\frac{(2x)^2\times x}{(0.076-x)^2}[/tex]
Solving for x:
x = 0.00051
The equilibrium concentration of hydrogen gas:
[tex][H_2]=2x=2\times 0.00051 M=0.0010 M[/tex]