The electric field strength in the space between two closely spaced parallel disks is 1.0 105 N/C. This field is the result of transferring 3.9 109 electrons from one disk to the other. What is the diameter of the disks

Respuesta :

Answer:

[tex]D=2.996\times 10^{-2} m[/tex]

Explanation:

*Assume the parallel disks have equal diameters.

Given the electric strength as  [tex]1.0\times 10^5 N/C.[/tex]  transferring [tex]3.9\times 10^9[/tex] electrons, the disk's Area can be calculated using the formula:

[tex]E=\frac{\eta}{\epsilon_o}=\frac{Q}{A\epsilon_o}\\\\A=\frac{Q}{E\epsilon_o}\\\\=\frac{(3.9\times 10^9)\times (1.6\times10^{-19})}{(1.0\times 10^5 )\times (8.85\times10^{-12})}\\\\A=7.0508\times 10^{-4} \ m^2[/tex]

#We now calculate the disks diameter:

[tex]A=\pi(D/2)^2\\\\2\sqrt{\frac{A}{\pi}}=D\\\\=2\sqrt{7.0508\times 10^{-4}/\pi}\\\\D=2.996\times 10^{-2} \ m[/tex]

Hence, the diameter of the disks is [tex]D=2.996\times 10^{-2} m[/tex]