Answer with Explanation:
We are given that
[tex]r=0.053 nm=0.053\times 10^{-9} m[/tex]
[tex]1 nm=10^{-9} m[/tex]
Charge on proton,q=[tex]1.6\times 10^{-19} C[/tex]
a.We have to find the electric potential of the proton at the position of the electron.
We know that the electric potential
[tex]V=\frac{kq}{r}[/tex]
Where [tex]k=9\times 10^9[/tex]
[tex]V=\frac{9\times 10^9\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}[/tex]
[tex]V=27.17 V[/tex]
B.Potential energy of electron,U=[tex]\frac{kq_e q_p}{r}[/tex]
Where
[tex]q_e=-1.6\times 10^{-19} c=[/tex]Charge on electron
[tex]q_p=q=1.6\times 10^{-19} C[/tex]=Charge on proton
Using the formula
[tex]U=\frac{9\times 10^9\times (-1.6\times 10^{-19}\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}[/tex]
[tex]U=-4.35\times 10^{-18} J[/tex]