contestada

WILL GIVE BRAINLIEST
Given the functions k(x) = 2x2 − 5 and p(x) = x − 3, find (k ∘ p)(x).
(k ∘ p)(x) = 2x2 − 6x + 4
(k ∘ p)(x) = 2x2 − 12x + 13
(k ∘ p)(x) = 2x2 − 12x + 18
(k ∘ p)(x) = 2x2 − 8

Respuesta :

Answer:

(k ∘ p)(x) = 2x^2 − 12x + 13

Step-by-step explanation:

k(x) = 2x^2 − 5 and p(x) = x − 3,

(k ∘ p)(x).= k(p(x))

This means put the function p(x) in for x in the function k(x)

(k ∘ p)(x) = 2(p(x)^2) -5

              = 2(x-3)^2 -5

              = 2 (x-3)(x-3) -5

              FOIL

              =2(x^2 -3x -3x+9)   -5

              =2 (x^2 -6x+9) -5

              = 2x^2 -12x +18 -5

Combine like terms

             = 2x^2 -12x +13