Respuesta :
Answer:
A.) 0.3088
B.) 0.0017
C.) part A
Explanation:
A.)
[tex]z1=[/tex] [tex]\frac{\left(150-137\right)}{27.7}[/tex][tex]=0.4693[/tex]
[tex]z2=\frac{\left(201-137\right)}{27.7}=2.3105[/tex]
[tex]P(0.4693<x<2.3105) = 0.3088[/tex]
B.)
[tex]z1=\frac{150-137}{27.7/ \sqrt{39}} =2.9309\\z2=\frac{201-137}{27.7/ \sqrt{39}}=14.4289[/tex]
[tex]\\P(2.9309<x<14.4289)=0.0016899[/tex]
C.) Since the seat performance for an individual pilot is more important than 39 different pilots.
Answer:
hi the figures for the weight of the pilots under consideration is wrong the correct weights are 150 lb and 201 lb
- 0.0665
- 0.0106
- part A
Explanation:
A) probability that a pilot's weight is between 150 lb and 201 lb
i.e P( p 150 ≤ x ≤ p 201 )
p ( 150 ) = [tex]\frac{150 - mean}{standard deviation}[/tex] = [tex]\frac{150 - 137}{27.7}[/tex] = 0.4693
p ( 201 ) = [tex]\frac{201 - mean}{standard deviation}[/tex] = [tex]\frac{201 - 137}{27.7}[/tex] = 2.3104
P ( p(150) ≤ x ≤ p(201) ) = (2.3104 - 04693) / standard deviation
= 1.8411 / 27.7 = 0.0665
B) probability if 39 different pilots are selected randomly and their mean weight is between 150 lb and 201 lb
i.e P( p(150) ≤ x ≤ p(201) )
p ( 150 ) = [tex]\frac{150 - mean }{standard deviation * \sqrt{39} }[/tex] = [tex]\frac{13}{27.7* \sqrt{39} }[/tex] = [tex]\frac{13}{172.9864}[/tex] = 0.0752
p ( 201 ) = [tex]\frac{201-137}{standard deviation * \sqrt{39} }[/tex] = [tex]\frac{64}{172.9864}[/tex] = 0.3700
P ( p(150) ≤ x ≤ p(201) ) = (0.3700 - 0.0752) / 27.7 = 0.0106
part A is considered because an infinite number of pilots are considered