Respuesta :

The value of [tex]\frac{d x}{d t}[/tex] is 20

Explanation:

Given that the expression is [tex]y=\sqrt{2 x+1}[/tex]

We need to determine the value of [tex]\frac{d x}{d t}[/tex] when [tex]x=12[/tex]

Value of [tex]\frac{d x}{d t}[/tex]:

Let us differentiate both sides of the equation with respect to t.

Thus, we have,

[tex]\frac{d y}{d t}=\frac{d(\sqrt{2 x+1})}{d t}[/tex]

Applying the chain rule, we get,

[tex]\frac{d y}{d t}=\frac{d(\sqrt{2 x+1})}{d x} \times \frac{d x}{d t}[/tex]

Differentiating, we get,

[tex]\frac{d y}{d t}=\frac{1}{2 \sqrt{2 x+1}} \times(2) \times \frac{d x}{d t}[/tex]

Simplifying, we get,

[tex]\frac{d y}{d t}=\frac{1}{\sqrt{2 x+1}} \times \frac{d x}{d t}[/tex]

Now, we shall determine the value of [tex]\frac{d x}{d t}[/tex] when [tex]x=12[/tex]

Substituting [tex]x=12[/tex] and [tex]\frac{dy}{dt}=4[/tex], we have,

[tex]4=\frac{1}{\sqrt{2(12)+1}} \times \frac{d x}{d t}[/tex]

Simplifying the values, we get,

 [tex]4=\frac{1}{\sqrt{25}} \times \frac{d x}{d t}[/tex]

 [tex]4=\frac{1}{5} \times \frac{d x}{d t}[/tex]

[tex]20=\frac{d x}{d t}[/tex]

Thus, the value of [tex]\frac{d x}{d t}[/tex] is 20

Answer:

20

Step-by-step explanation:

dy/dx = [½(2x + 1)^-½]×2

= 1/[(2x+1)^½]

At x = 12

1/(25^½) = 1/5

dy/dx = dy/dt × dt/dx

⅕ = 4 × dt/dx

dx/dt = 4 ÷ ⅕

= 4 × 5

= 20