contestada

Two blocks with different masses are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The masses are released from rest, and the more massive one starts to descend. After this block has descended 1.20 m, its speed is 3.00 m/s.

Respuesta :

Answer with Explanation:

We are given that

Speed,v=3 m/s

y=1.2 m

Total mass of two block=M=[tex]m_1+m_2[/tex]=22 kg

We have to find the mass of each block.

According to law of conservation of energy

[tex]\Delta K=\Delta U[/tex]

[tex]\frac{1}{2}(m_1+m_2)v^2=(m_2-m_1)gy[/tex]

[tex]\frac{1}{2}(22)(3)^2=(m_2-m_1)\times 9.8\times 1.2[/tex]

Where [tex]g=9.8 m/s^2[/tex]

[tex]m_2-m_1=\frac{22\times 3^2}{2\times 9.8\times 1.2}[/tex]

[tex]m_2-m_1=8.4[/tex]

[tex]m_2+m_1=22[/tex]

[tex]2m_2==30.4[/tex]

[tex]m_2=\frac{30.4}{2}=15.2 kg[/tex]

Substitute the value

[tex]m_1+m_2=22[/tex]

[tex]m_1+15.2=22[/tex]

[tex]m_1=22-15.2[/tex]

[tex]m_1=6.8 kg[/tex]