Let f(x) = -2x + 7 and g(x) = -6x + 3. Find fxg and state its domain.

-14x^2 + 36x - 18; all real numbers except x = 7


-14x^2 + 36x - 18; all real numbers


12x^2 - 48x + 21; all real numbers except x = 1


12x^2 - 48x + 21; all real numbers

Respuesta :

Option D: [tex](f\times g)(x)=12 x^{2}-48 x+21[/tex]; all real numbers.

Explanation:

Given that the functions are [tex]f(x)=-2 x+7[/tex] and [tex]g(x)=-6 x+3[/tex]

We need to determine the value of [tex](f\times g)(x)[/tex] and its domain.

The value of [tex](f\times g)(x)[/tex]:

The value of [tex](f\times g)(x)[/tex] can be determined by multiplying the two functions.

Thus, we have,

[tex](f\times g)(x)=f(x)\times g(x)[/tex]

                [tex]=(-2x+7)(-6x+3)[/tex]

                [tex]=12x^2-6x-42x+21[/tex]

[tex](f\times g)(x)=12 x^{2}-48 x+21[/tex]

Thus, the value of [tex](f\times g)(x)[/tex] is [tex](f\times g)(x)=12 x^{2}-48 x+21[/tex]

Domain:

We need to determine the domain of the function [tex](f\times g)(x)[/tex]

The domain of the function is the set of all independent x - values for which the function is real and well defined.

Thus, the function [tex](f\times g)(x)=12 x^{2}-48 x+21[/tex] has no undefined constraints, the function is well defined for all real numbers.

Hence, Option D is the correct answer.

Answer:

12x² - 48x + 21; all real numbers

Step-by-step explanation:

f(x) = -2x + 7

g(x) = -6x + 3

f(x)×g(x) = (-2x + 7)(-6x + 3)

= 12x² - 42x - 6x + 21

= 12x² - 48x + 21