Respuesta :
Answer:
14.8 kg
Explanation:
We are given that
[tex]m_1=43.7 kg[/tex]
[tex]m_2=12.1 kg[/tex]
[tex]g=9.8 m/s^2[/tex]
[tex]a=\frac{1}{2}(9.8)=4.9 m/s^2[/tex]
We have to find the mass of the pulley.
According to question
[tex]T_2-m_2 g=m_2 a[/tex]
[tex]T_2=m_2a+m_2g=m_2(a+g)=12.1(9.8+4.9)=177.87 N[/tex]
[tex]T_1=m_1(g-a)=43.7(9.8-4.9)=214.13 N[/tex]
Moment of inertia of pulley=[tex]I=\frac{1}{2}Mr^2[/tex]
[tex](T_2-T_1)r=I(-\alpha)=\frac{1}{2}Mr^2(\frac{-a}{r})=\frac{1}{2}Mr(-4.9)[/tex]
Where [tex]\alpha=\frac{a}{r}[/tex]
[tex](177.87-214.13)=-\frac{1}{2}(4.9)M[/tex]
[tex]-36.26=-\frac{1}{2}(4.9)M[/tex]
[tex]M=\frac{36.26\times 2}{4.9}=14.8 kg[/tex]
Hence, the mass of the pulley=14.8 kg
The mass of the pulley is 14.8 kg.
Calculation of the mass:
Since
m1 = 12.1 kg
m2 = 43.7 kg
g = 9.8 m/s^2
a = 1/2(9.8) = 4.9m/s^2
Now we know that
T2 - m2g = m2a
T2 = m2a + m2g
= m2(a + g)
= 12.1(9.8 + 4.9)
= 177.87 N
Now
T1 = m1(g - a)
= 43.7 (9.8-4.9)
= 214.13 N
Now moment of inertia should be
(T2 - T1)r = -1/2(4.9M)
(177.87-214.13) = -1.2(4.9)M
-36.26 = -1.2(4.9)M
M = 14.8 kg
hence, The mass of the pulley is 14.8 kg.
Learn more about mass here: https://brainly.com/question/18470727.