For a tensile test, it can be demonstrated that necking begins when dσTdεT=σT. Using Equation σT=K(εT)n, determine an expression for the value of true strain at this onset of necking.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The value of the true strain at the onset of the necking is proved as, [tex]n = \epsilon_T[/tex]

Explanation:

From the question we see that necking begins when

                 [tex]\frac{d \sigma_T}{d \epsilon_T} = \sigma_T ---(1)[/tex]

Now we are told that

               [tex]\sigma_T = K \epsilon ^n _T[/tex]

So substituting this into equation 1

                 [tex]\frac{d}{d \epsilon_T} (K \epsilon^n_T) = \sigma_T[/tex]

               [tex]K n \epsilon^{n-1}_T = \sigma_T[/tex]

But  we are told in the question that [tex]\sigma_T = K \epsilon ^n _T[/tex]   So,

           [tex]K n \epsilon^{n-1}_T = K \epsilon ^n _T[/tex]

Dividing both sides with [tex]K \epsilon ^n _T[/tex]

  We have

                [tex]\frac{K n \epsilon^{n-1}_T}{ K \epsilon ^n _T} =\frac{ K \epsilon ^n _T}{K \epsilon ^n _T}[/tex]

                    [tex]n \epsilon_T^{-1} =1[/tex]

                     [tex]n = \epsilon_T[/tex]

           

       

Ver imagen okpalawalter8