A circular loop of wire with radius R is in a uniform magnetic field with magnitude B that points in the positive z-direction. The loop is initially in the xy-plane and carries a constant, unknown current. Flipping the loop over requires you to do positive work (W). Determine the current in the loop.

Respuesta :

Answer:

The current in the loop is  [tex]I = \frac{W}{2 \pi R^2 B}[/tex]

Explanation:

From the question we are told that

          The magnetic field(B) points in a positive z direction so mathematically

                  [tex]B = 0\r i + 0\r j + B\r k[/tex]

                     [tex]= B\r k[/tex]

         The radius is given as R

           Let denote the constant unknown current as  [tex]I[/tex]

Generally the magnetic dipole moment of the field is mathematically represented as

                       [tex]\mu = IA[/tex]

And its direction is the positive z-direction  So

                   [tex]\mu = IA \r k[/tex]

                    [tex]A = \pi R^2[/tex]

The  potential energy is mathematically represented as

               [tex]V = - \mu B cos \theta[/tex]

The negative sign show that it increases when work is done against the field  

     For the loop the initial potential energy is

            [tex]V_i = -\mu B cos (0)[/tex]

               [tex]=-I \pi R^2 B[/tex]

     The final potential energy is

             [tex]V_f = -\mu B cos(180)[/tex]     the 180° showing the loop is flipped over  

                 [tex]=I \pi R^2 B[/tex]

 The change in the Potential energy give the workdone

Let denote this workdone with W So,

                [tex]W = V_f -V_i[/tex]

                    [tex]= I \pi R^2 B - (-I \pi R^2 B)[/tex]

                    [tex]= 2 \pi I R^2 B[/tex]

Making the current subject of the formula we have

               [tex]I = \frac{W}{2 \pi R^2 B}[/tex]