Respuesta :

                                                      Q # 1    

Explanation

Given the parabola

 [tex]f\left(x\right)=\left(x-3\right)^2-1[/tex]

Openness

  • It OPENS UP, as 'a=1' is positive.

Finding Vertex

The vertex of an up-down facing parabola of the form

[tex]y=ax^2+bx+c\:\mathrm{is}\:x_v=-\frac{b}{2a}[/tex]

[tex]\mathrm{Rewrite}\:y=\left(x-3\right)^2-1\:\mathrm{in\:the\:form}\:y=ax^2+bx+c[/tex]

[tex]y=x^2-6x+8[/tex]

[tex]a=1,\:b=-6,\:c=8[/tex]

[tex]x_v=-\frac{\left(-6\right)}{2\cdot \:1}[/tex]

[tex]x_v=3[/tex]

Finding [tex]y_v[/tex]

[tex]y_v=3^2-6\cdot \:3+8[/tex]

[tex]y_v=-1[/tex]

So vertex is:

[tex]\left(3,\:-1\right)[/tex]

Horizontal Translation

[tex]y=\left(x-3\right)^2[/tex] moves the graph RIGHT 3 units.

Vertical Translation

 [tex]f\left(x\right)=\left(x-3\right)^2-1[/tex] moves the graph DOWN 1 unit.

Stretch or Compress Vertically

As [tex]a = 1[/tex], so it does not affect the stretchiness or compression.

                                       Q # 2  

Explanation:

[tex]f\left(x\right)=-\left(x+1\right)^2-2[/tex]

Openness

  • It OPENS DOWN, as 'a=-1' is negative.

Vertex

[tex]\mathrm{Rewrite}\:y=-\left(x+1\right)^2-2\:\mathrm{in\:the\:form}\:y=ax^2+bx+c[/tex]

[tex]y=-x^2-2x-3[/tex]

[tex]a=-1,\:b=-2,\:c=-3[/tex]

[tex]x_v=-\frac{\left(-2\right)}{2\left(-1\right)}[/tex]

[tex]x_v=-1[/tex]

[tex]\mathrm{Plug\:in}\:\:x_v=-1\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}[/tex]

[tex]y_v=-2[/tex]

So vertex is:

[tex]\left(-1,\:-2\right)[/tex]

Horizontal Translation

[tex]y=\left(x+1\right)^2[/tex] moves the graph LEFT 1 unit.

Vertical Translation

[tex]f\left(x\right)=\left(x+1\right)^2-2[/tex]   moves the graph DOWN 2 unit.

Stretch or Compress Vertically

As [tex]a = -1[/tex] < 0, so it is either stretched or compressed.

                                          Q # 3  

Explanation:

[tex]f\left(x\right)=\frac{1}{3}\left(x-4\right)^2+6[/tex]

It OPENS UP, as 'a=1/3' is positive.

Vertex

[tex]\mathrm{Rewrite}\:y=\frac{1}{3}\left(x-4\right)^2+6\:\mathrm{in\:the\:form}\:y=ax^2+bx+c[/tex]

[tex]y=\frac{1\cdot \:x^2}{3}-\frac{8x}{3}+\frac{34}{3}[/tex]

[tex]a=\frac{1}{3},\:b=-\frac{8}{3},\:c=\frac{34}{3}[/tex]

[tex]x_v=-\frac{\left(-\frac{8}{3}\right)}{2\left(\frac{1}{3}\right)}[/tex]

[tex]x_v=4[/tex]            

Finding [tex]y_v[/tex]

[tex]y_v=\frac{1\cdot \:4^2}{3}-\frac{8\cdot \:4}{3}+\frac{34}{3}[/tex]

[tex]y_v=6[/tex]            

So vertex is:

[tex]\left(4,\:6\right)[/tex]

Horizontal Translation

[tex]f\left(x\right)=\left(x-4\right)^2[/tex] moves the graph RIGHT 4 units.

Vertical Translation

[tex]f\left(x\right)=}\left(x-4\right)^2+6[/tex]   moves the graph UP 6 unit.

Stretch or Compress Vertically

As [tex]a=\frac{1}{3}<1[/tex], so it the graph is vertically compressed by a factor of 1/3.

Check the attached comparison graphs.

                                             Q # 4

Explanation:

Given the function

 [tex]f\left(x\right)=-\left(x+3\right)^2[/tex]

It OPENS DOWN, as 'a=-1' is negative.

Vertex

The vertex of an up-down facing parabola of the form [tex]y=a\left(x-m\right)\left(x-n\right)[/tex]

is the average of the zeros [tex]x_v=\frac{m+n}{2}[/tex]

[tex]y=-\left(x+3\right)^2[/tex]

[tex]a=-1,\:m=-3,\:n=-3[/tex]

[tex]x_v=\frac{m+n}{2}[/tex]

[tex]x_v=\frac{\left(-3\right)+\left(-3\right)}{2}[/tex]

[tex]x_v=-3[/tex]

Finding [tex]y_v[/tex]

[tex]y_v=-\left(-3+3\right)^2[/tex]

[tex]y_v=0[/tex]

So vertex is:

[tex]\left(-3,\:0\right)[/tex]

Horizontal Translation

[tex]y=\left(x+3\right)^2[/tex] moves the graph LEFT 3 units.

Vertical Translation

[tex]y=\left(x+3\right)^2[/tex] does not move the graph vertically.

Stretch or Compress Vertically

As [tex]a=-1<1[/tex], so it the graph is either vertically stretched or compressed.

                                             Q # 5  

Explanation:

[tex]f\left(x\right)=\left(x+5\right)^2-3[/tex]

Openness

  • It OPENS UP, as 'a=1' is positive.

Vertex

[tex]\mathrm{Rewrite}\:y=\left(x+5\right)^2-3\:\mathrm{in\:the\:form}\:y=ax^2+bx+c[/tex]

[tex]y=x^2+10x+22[/tex]

[tex]a=1,\:b=10,\:c=22[/tex]

[tex]x_v=-\frac{10}{2\cdot \:1}[/tex]

[tex]x_v=-5[/tex]

Finding [tex]y_v[/tex]

[tex]y_v=\left(-5\right)^2+10\left(-5\right)+22[/tex]

So vertex is:

[tex]\left(-5,\:-3\right)[/tex]

Horizontal Translation

[tex]f\left(x\right)=\left(x+5\right)^2[/tex] moves the graph LEFT 5 units.

Vertical Translation

[tex]f\left(x\right)=\left(x+5\right)^2-3[/tex]   moves the graph DOWN 3 unit.

Stretch or Compress Vertically

As [tex]a = 1[/tex], so it does not affect the stretchiness or compression.

Check the attached comparison graphs.

                                 

                                        Q # 6

THE DETAILS OF COMPLETE SOLUTION OF QUESTION 6 IS ATTACHED IN THE DIAGRAM AS THE 5000 CHARACTERS WERE ALREADY FILLED. SO, I solved via the attached figure.

SO, PLEASE CHECK THE LAST FIGURE TO FIND THE COMPLETE SOLUTION OF THE Q#6.

       

Ver imagen SaniShahbaz
Ver imagen SaniShahbaz
Ver imagen SaniShahbaz
Ver imagen SaniShahbaz