Respuesta :

Solutions of [tex]2cos(3x)= -\sqrt{2}[/tex] in the interval from [0,2pi) is [tex]x =\frac{\pi}{12}[/tex]  and [tex]x = \frac{23\pi}{12}[/tex] .

Step-by-step explanation:

Find all solutions in the interval from [0,2pi)

[tex]2cos(3x)= -\sqrt{2}[/tex]

⇒ [tex]2cos(3x)= -\sqrt{2}[/tex]

⇒ [tex]\frac{2cos(3x)}{2}= \frac{-\sqrt{2}}{2}[/tex]

⇒ [tex]cos3x= \frac{-\sqrt{2}(\sqrt{2})}{2{\sqrt{2}}}[/tex]

⇒ [tex]cos3x= \frac{-2}{2{\sqrt{2}}}[/tex]

⇒ [tex]cos3x= \frac{-1}{{\sqrt{2}}}[/tex]

⇒ [tex]cos^{-1}(cos3x)= cos^{-1}(\frac{-1}{{\sqrt{2}}})[/tex]

⇒ [tex]3x=\pm \frac{\pi}{4}[/tex]

⇒ [tex]x=\pm \frac{\pi}{12}[/tex]

Cosine General solution is :

[tex]x = \pm cos^{-1}(y)+ 2k\pi[/tex]

[tex]x = \pm \frac{\pi}{12}+ 2k\pi[/tex] , k is any integer .

At k=0,

⇒ [tex]x =\frac{\pi}{12}[/tex] ,

At k=1,

⇒ [tex]x = - \frac{\pi}{12}+ 2\pi[/tex]

⇒ [tex]x = \frac{23\pi}{12}[/tex]

Therefore , Solutions of [tex]2cos(3x)= -\sqrt{2}[/tex] in the interval from [0,2pi) is [tex]x =\frac{\pi}{12}[/tex]  and [tex]x = \frac{23\pi}{12}[/tex] .