Respuesta :
Answer:
[tex]5 + 2i[/tex]
Step-by-step explanation:
We were given the complex numbers;
[tex]a = - 2 - 5i[/tex]
and
[tex]b = - i[/tex]
We want to find the product;
[tex]a {b}^{3} [/tex]
We substitute the complex numbers into the expression and simplify:
[tex]( - 2 - 5i)( {i)}^{3} [/tex]
This is rewritten as:
[tex]( - 2 - 5i)( {i)}^{2} \times i[/tex]
Note that
[tex] {i}^{2} = - 1[/tex]
We substitute to obtain:
[tex]( - 2 - 5i) \times - i [/tex]Let us expand to get:
[tex] - 2 \times - i + 5i \times - i[/tex]
This simplifies to:
[tex]2i - 5 {i}^{2} [/tex]
This gives:
[tex]2i - 5( - 1) = 2i + 5[/tex]
The product of the complex numbers will be:
a*b^3 = -2i*b^3 + 5b^3
How to find the given expression?
We know that:
- a = -2 - 5i
- b = -ib
Then the product of the complex numers is:
a*b^3 = (-2 - 5i)*(-ib)^3
Remember that i^2 = -1, then:
a*b^3 = (-2 - 5i)*(-ib)^3 = (-2 - 5i)*(-ib)^2*(-ib)
= (-2 - 5i)*(-b^2)*(-ib) = (-2 - 5i)*(ib^3)
= -2i*b^3 + 5b^3
If you want to learn more about complex numbers, you can read:
https://brainly.com/question/10662770