12. The y-axis is NOT the line of reflection for which pair of points?
B(3, –8) → B′(–3, –8)
B(–6, 2) → B′(6, 2)
B(5, –7) → B′(–5, –7)
B(2, –2) → B′(2, 2)

12 The yaxis is NOT the line of reflection for which pair of points B3 8 B3 8 B6 2 B6 2 B5 7 B5 7 B2 2 B2 2 class=

Respuesta :

Option D: [tex]B(2,-2) \rightarrow B^{\prime}(2,2)[/tex] is the pair of points which does not have y - axis as the line of reflection.

Explanation:

The translation rule to reflect the pair of points across the y - axis is given by

[tex](x,y)\implies (-x,y)[/tex]

Option A: [tex]B(3,-8) \rightarrow B^{\prime}(-3,-8)[/tex]:

Let us translate the coordinate B(3,-8) across y - axis using the translation rule [tex](x,y)\implies (-x,y)[/tex], we get,

[tex](3,-8)\implies (-3,-8)[/tex]

Thus, we get, [tex]B(3,-8) \rightarrow B^{\prime}(-3,-8)[/tex]

Hence, the pair of points [tex]B(3,-8) \rightarrow B^{\prime}(-3,-8)[/tex] has the line of reflection across y - axis.

Therefore, Option A is not the correct answer.

Option B: [tex]B(-6,2) \rightarrow B^{\prime}(6,2)[/tex]:

Let us translate the coordinate B(-6,2) across y - axis using the translation rule [tex](x,y)\implies (-x,y)[/tex], we get,

[tex](-6,2)\implies (6,2)[/tex]

Thus, we get, [tex]B(-6,2) \rightarrow B^{\prime}(6,2)[/tex]

Hence, the pair of points [tex]B(-6,2) \rightarrow B^{\prime}(6,2)[/tex] has the line of reflection across y - axis.

Therefore, Option B is not the correct answer.

Option C: [tex]B(5,-7) \rightarrow B^{\prime}(-5,-7)[/tex]:

Let us translate the coordinate B(5,-7) across y - axis using the translation rule [tex](x,y)\implies (-x,y)[/tex], we get,

[tex](5,-7)\implies (-5,-7)[/tex]

Thus, we get, [tex]B(5,-7) \rightarrow B^{\prime}(-5,-7)[/tex]

Hence, the pair of points [tex]B(5,-7) \rightarrow B^{\prime}(-5,-7)[/tex] has the line of reflection across y - axis.

Therefore, Option C is not the correct answer.

Option D: [tex]B(2,-2) \rightarrow B^{\prime}(2,2)[/tex]:

Let us translate the coordinate B(2,-2) across y - axis using the translation rule [tex](x,y)\implies (-x,y)[/tex], we get,

[tex](2,-2)\implies (-2,-2)[/tex]

Thus, we get, [tex]B(2,-2) \rightarrow B^{\prime}(-2,-2)[/tex]

Hence, the pair of points [tex]B(2,-2) \rightarrow B^{\prime}(2,2)[/tex] does not has the line of reflection across y - axis.

Therefore, Option D is the correct answer.