Respuesta :

Option A:

m∠B = 42.1°

Solution:

Given data:

b = 18, c = 15 and m∠C = 34°

Using sine formula:

[tex]$\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

Substitute the given values.

[tex]$\frac{18}{\sin B}=\frac{15}{\sin 34^\circ}[/tex]

Do cross multiplication.

[tex]${18} \times {\sin 34^\circ}={15} \times{\sin B}[/tex]

Divide by 15 on both sides.

[tex]$\frac{{18} \times {\sin 34^\circ}}{15} =\frac{{15} \times{\sin B}}{15}[/tex]

[tex]$\frac{{6} \times0.559}{5} =\sin B[/tex]

[tex]$0.6708=\sin B[/tex]

[tex]$\sin ^{-1}0.6708= B[/tex]

[tex]42.1^\circ =B[/tex]

Switch the sides.

m∠B = 42.1°

Option A is the correct answer.