Respuesta :

The solution to the system of equations is [tex](\frac{5}{3},\frac{14}{3})[/tex]

Explanation:

Given that the system of equations are [tex]y=4x-2[/tex] and [tex]y=x+3[/tex]

We need to determine the solution to the system of equations.

The solution of the system of equations can be determined using the substitution method.

Thus, we have,

[tex]4x-2=x+3[/tex]

Simplifying, we get,

[tex]3x-2=3[/tex]

     [tex]3x=5[/tex]

       [tex]x=\frac{5}{3}[/tex]

Thus, the value of x is [tex]\frac{5}{3}[/tex]

Substituting [tex]x=\frac{5}{3}[/tex] in the equation [tex]y=x+3[/tex], we get,

[tex]y=\frac{5}{3}+3[/tex]

Simplifying, we get,

[tex]y=\frac{5+9}{3}[/tex]

[tex]y=\frac{14}{3}[/tex]

Thus, the value of y is [tex]\frac{14}{3}[/tex]

Hence, the solution to the system of equations is [tex](\frac{5}{3},\frac{14}{3})[/tex]

Answer:X=1 2/3, Y=4 2/3

Step-by-step explanation:I did it on khan