A steel spur pinion has a pitch of 6 teeth/in, 22 full-depth teeth, and a 20° pressure angle. The pinion runs at a speed of 1200 rev/min and transmits 15 hp to a 60-tooth gear. If the face width is 2 in, estimate the bending stress.

Respuesta :

Answer:

7.63 ksi

Explanation:

Given that:

pitch(p) = 6 teeth/in

pressure angle [tex](\phi) = 20^0[/tex]

Pinion speed [tex](n_p)[/tex] = 1200 rev/min

Power(H) = 15 hp

Teeth on gear [tex](N_{\sigma})[/tex] = 60

Teeth on pinion [tex](N_p)[/tex] = 22

Face width (b)  = 2 in

To find the diameter from the parameters above ; we have:

(d) = [tex]\frac{N}{p}[/tex]

= [tex]\frac{22}{6}[/tex]

= 3.667 in

Using values of the Lewis factor Y for [tex](N_p)[/tex]  = 22

Y = 0.331

Then finding the velocity; we have the formula;

[tex]V = \frac{\pi d n_p}{12}[/tex]

[tex]V = \frac{\pi *3.667*1200}{12}[/tex]

V = 1152 ft/min

For the cut or mi;;ed profile; the velocity factor can be determined as

[tex]K_v = \frac{1200+V}{1200}[/tex]

[tex]K_v = \frac{1200+1152}{1200}[/tex]

[tex]K_v = 1.96[/tex]

Then we proceed to determine the value of our tangential load also as follows:

[tex]W^t = \frac{T}{\frac{d}{2} }[/tex]

[tex]W^t = \frac{63025H}{\frac{n_pd}{2} }[/tex]

[tex]W^t = \frac{63025*15}{1200*\frac{3.667}{2} }[/tex]

= 429.79 lbf

Finally ; the bending stress is calculated as :

[tex](\sigma) = \frac{K_ vW^tp}{FY}[/tex]

[tex](\sigma) = \frac{1.96*429.79*6}{2*0.331}[/tex]

[tex](\sigma) = 7634.94 psi[/tex]

[tex](\sigma) =7.63 ksi[/tex]

Thus, the bending stress is 7.63 ksi

Baraq

Answer:

27.7Mpa

Explanation:

d = Nm = 22(6) = 132mm

From values of Lewis from factor Y.

Y = 0.331

V = πdn = π(0.132)(1200/60)

= 8.297 m/s

Using Dynamic Effect equation (cut/milled profile)

Kv = (6.1 + 8.297)/6.1

= 2.36

W¹ = Hp/πdn

Converting Hp to W

= 15hp ≈ 11190W

= 11190/π(0.132)(1200/60)

= 11190/8.29= 1349.82N

∆ = KvW¹/mFY

converting inches to millimeter 1in ≈ 2.54mm

= 2.36(1349.82)/ 0.006 (0.058)(0.331)

= 3185.5752/0.000115188

= 27655443.2753

=27.7Mpa.