Write the equation of the line passing through the points (−1, 2) and (3, 4)



A)y = 2x − 2B)y = 2x − 10C)y = 12x + 52D)y = 12x − 52

Respuesta :

Answer:

y = [tex]\frac{1}{2}[/tex] x + [tex]\frac{5}{2}[/tex]

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Calculate m using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

with (x₁, y₁ ) = (- 1, 2) and (x₂, y₂ ) = (3, 4)

m = [tex]\frac{4-2}{3+1}[/tex] = [tex]\frac{2}{4}[/tex] = [tex]\frac{1}{2}[/tex], thus

y = [tex]\frac{1}{2}[/tex] x + c ← is the partial equation

To find c substitute either of the 2 points into the partial equation.

Using (3, 4), then

4 = [tex]\frac{3}{2}[/tex] + c ⇒ c = 4 - [tex]\frac{3}{2}[/tex] = [tex]\frac{5}{2}[/tex]

y = [tex]\frac{1}{2}[/tex] x + [tex]\frac{5}{2}[/tex] ← equation of line